emc testing

A Seasonal Series on Transient Testing: Part 4

A Sudden Spark Made My Screen Go Dark

Electrostatic Discharges (ESD) are everywhere. We feel them when we reach for a doorknob, a car-door handle, or pull off a sweater. Your electronic products feel them too, and often not in a good way. False displays, logic upsets, or even component damage can result.  In Part 4 of Elite’s transient testing series, Tom Klouda and Tom Braxton show how an ESD test is done and why you need to know more about it. Read more from our transient series in Part 1Part 2Part 3, and Part 5.


It’s a brisk morning in January and you slide off your coat, settle in the chair next to the equipment bench, and rub your hands together to get the chill off your fingers.  Rolling over to the bench, you reach for the power switch on the laptop and – zap! Your arm jerks back and the screen has gone blue. Reboot and hope for the best.

You could change a few details in this story, but we’ve all had this experience.  It doesn’t have to be a cold day in January – it could be any time of year in any office or lab.  Electrostatic discharge (ESD) has raised its head and bit your finger. ESD also bit the laptop, but the machine doesn’t have an arm to jerk back in response.  The laptop was knocked down after taking a punch and is getting back on its feet. You hope to see that no data was corrupted when it comes up again.

Digital devices are especially vulnerable to ESD upsets. The actions described above can build up a charge of 20kV or more between the finger and the surface. The current level is extremely low, but a jolt that size can throw off a device’s internal clock and, in the worst case, damage semiconductor devices.

IEC 61000-4-2, the basic standard for ESD immunity testing, spells out voltage severity levels, test environments, and test procedures.  Those specs aim for test repeatability while simulating a condition that is inherently not repeatable.  The table below shows the voltage severity levels for two different discharge types, contact and air.

Contact discharge (sometimes called “current injection”) is performed when the tip of the ESD test instrument is touching the test-point surface before the discharge is applied.  This simulates the case when there is direct contact between the EUT and the discharge source, as shown by Elite test engineer Brelon Weathersby in the figure to the right:

Elite’s Brelon Weathersby testing the ESD contact-discharge instrument

Air discharge is, as the name implies, a discharge passing from the instrument tip through the air to the test point. The illustration below shows the path of an air discharge.

A third discharge type is indirect, where discharges are applied to a nearby coupling plane.  This simulates the condition where the zap occurs in the vicinity of the EUT, creating a momentary RF field that can be induced into the EUT.  The illustration below shows the positions of the horizontal coupling plane (HCP) and the vertical coupling plane (VCP). Discharges are applied at the edges of the coupling planes while the EUT is monitored.

ESD behavior is statistical.  The equipment under test (EUT) can be zapped in the same place at the same level under the same conditions, and fail every time, half the time, or 1% of the time.  That’s why the standard calls for a minimum of ten discharges at each voltage level, negative and positive.  If a device is tested a 2kV, 4kV, and 8kV, at both polarities, that would mean 60 discharges at that test point.  If the EUT has ten specified test points, there would be 600 discharges applied.  It’s easy to see how that number could grow for a more complex EUT.

Any device going through an ESD test needs a test plan showing the EUT’s configuration and test point locations. Test points are chosen based on how likely they will be zapped in actual use.  For example, anywhere hands are going to touch, such as control panels and cable connectors, are obvious test points.  Conductive surfaces get contact discharges, and non-conductive surfaces (plastic enclosures, painted surfaces, etc.) get air discharges.  If an air discharge can’t be generated because the surface is heavily insulated, the non-discharge is noted along with other results.

Maintaining a record of the results is critically important.  The test plan will have defined failure criteria stating what is acceptable and not acceptable.  If the EUT responds in any way (blinking lights, interruptions, etc.), those are noted for the voltage level and polarity.  After many discharges a, pattern might become apparent, and that is useful information for those responsible for the product.

The final report emerging from an ESD test may contain a pass-or-fail determination, but it might be a set of data noting only the responses to the various discharges.  Those results are inconclusive and require engineering judgments to be made by the EUT’s responsible engineer.  An example of an inconclusive result is a toy that had flickering lights during the ESD test – was that a failure?  Maybe not, since it’s not a safety hazard or a loss of function.  On the other hand, it could be a hazard for critical displays like fluid levels if ESD causes erratic flashes.  These are the types of judgments that are made to determine whether an EUT’s response is actually a failure.

As with any transient phenomenon, the first order of business is understanding the EUT’s failure criteria. The upfront work to craft a test plan will take some time, but it will save both time and uncertainty when the results are known.  A thorough ESD test could have predicted the blue-screen reset seen after you slid into your chair and rolled near the bench. Better to know that might happen before your customer is charged to 20kV and finds out the hard way.

Contact Elite for more information on planning and executing your ESD immunity test.  You’ll be glad you did.

Learn more in A Seasonal Series on Transient Testing: Part 1Part 2Part 3, and Part 5.

Join Elite’s monthly newsletter for the latest on standards, test procedures, fascinating facts, profiles of Elite engineers, and more. Fill out the form below to become part of our global community!

Newsletter Sign Up

By submitting this form, you are consenting to receive marketing emails from: Elite Electronic Engineering, Inc., 1516 Centre Circle Drive, Downers Grove, IL, 60515, US, https://www.elitetest.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.

This field is for validation purposes and should be left unchanged.

A Seasonal Series on Transient Testing: Part 1

The weeks and months pass quickly this time of year.  The days are transient things, popping on the calendar and vanishing before we notice. 

This is the first of our new series with Elite’s Tom Klouda and Tom Braxton. Stay tuned for more transient talk in future blogs. Read Part 2Part 3Part 4 and Part 5.

Transient events are everywhere, including the space around your product.  Can your device tolerate a voltage surge?  An electrical fast transient?  An electrostatic discharge?  A magnetic impulse?  The only way to find out is to test it, and your product will need to navigate that test.  You’ll need an experienced guide to get you there.  The International Electrotechnical Commission (IEC) provides the standards, and Elite Electronic Engineering is the guide you need to lead you through.

What are transients and where do they come from?

A transient is a short-duration pulse brought about by stored energy or a disruption in current flow.  Anyone who has experienced electrostatic discharge (ESD) when pulling off a sweater during low humidity then reached for a metal doorknob has dealt with transients.  The ESD between the metal surface and the finger is a stored-energy phenomenon. 

Voltage surges on power lines are examples of a transient brought on by current-flow disruption. When an electrical contact is interrupted by opening or closing, voltage arcs and mechanical bouncing of the contacts create random pulses.  There will be uncontrolled transients that depend on several factors: the contact type, the voltage and current levels, whether current is AC or DC, and the conductors’ geometry.  Devices in line or adjacent to the source of those transients are all vulnerable to disruption or damage.  The figure below gives a simple illustration of a switch contact being closed and the arcs that would bring about transient pulses.

Illustration showing contact closure and generation of transient pulses

These transients can cause digital logic upsets that appear as process interruptions or corrupted data.  Some transients can cause actual damage, like that shown in the picture below.  Logic upsets are more common and can range from a simple annoyance to a critical malfunction and can be minimized with error-correcting software.  Component damage is clearly a larger concern as it results in a costly repair or replacement.

Example of transient surge damage

Transients can be radiated or conducted, or sometimes both.  For example, energizing a high-current device will almost certainly generate a series of electrical fast transients (EFT) on the power circuit, which will propagate to other devices drawing energy through power cables in that building.  In addition, that event will create a momentary radiated field that can be induced into other conductors or directly into nearby devices. 

Though transients are uncontrolled when they occur, repeatable test procedures are in place that offer confidence in your product’s ability to operate normally when transients happen.

How are products tested for transient immunity?

There are different types of transients and different types of products.   The IEC standards and guidelines establish product categories and test procedures for a wide range of transient phenomena.  For example, IEC 61000-4-2 addresses ESD immunity, laying out test procedures and severity-level choices that can be chosen depending on the product type and its intended environment.  The figure below shows a typical application of the test.

Example of an ESD test being performed on a product and the range of voltage levels given in IEC 61000-4-2

Similarly, voltage surges are covered in IEC 61000-4-5, which spells out test procedures that are effective in predicting a product’s ability to withstand lightning surges and other sudden voltage spikes.  Voltage levels are chosen based on the product’s category and intended environment.

Voltage waveform applied in an IEC 61000-4-5 surge test, and the specified voltage levels

Your product will be subjected to a variety of transient events: power surges and ESD, as shown above, but also noise bursts, voltage dips, and magnetic pulses, among others, all identified in the IEC 61000-4 series of standards.

Your product’s application and intended environment will determine which tests to apply and at what levels.  The experts at Elite Electronic Engineering can explain the tests and guide you through the necessary steps toward verification. 

Be sure to follow the Elite Insider Newsletter in the coming months.  Those newsletters will review in detail the transient types, the standards that define and characterize them, and the tests that are performed to evaluate the immunity of your product. Continue with Part 2 and Part 3Part 4 and Part 5.

Elite Electronic Engineering draws on 65 years of experience in testing products like yours and brings its expertise and evaluation skill to answer your questions.  We’ll see the days grow shorter this season and become more transient as they go by.  Verify that your product can also see transients go by  — Contact Elite to find out how.

Join Elite’s monthly newsletter for the latest on standards, test procedures, fascinating facts, profiles of Elite engineers, and more. Fill out the form below to become part of our global community!

Newsletter Sign Up

By submitting this form, you are consenting to receive marketing emails from: Elite Electronic Engineering, Inc., 1516 Centre Circle Drive, Downers Grove, IL, 60515, US, https://www.elitetest.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.

This field is for validation purposes and should be left unchanged.